Позвоните нам

8-8000-80-35-80
(звонок бесплатный)

Заказать звонок

Напишите письмо


infokz@rusautomation.kz

Открыть

РусВизуализация OP-VP-1.0

YouTube-канал

Главная > Статьи > Частотный электропривод. Эффективность применения частотно-регулируемых приводов

Частотный электропривод. Эффективность применения частотно-регулируемых приводов

« Назад 01.09.2020 15:18
Частотный электропривод. Эффективность применения частотно-регулируемых приводов

Логотип РусАвтоматизация

На сегодняшний день уже невозможно представить современное промышленное производство, транспортные системы, любую сферу жизнедеятельности человека без применения в них электрических двигателей. Для обеспечения непрерывного и энерогоэффективного управления технологическими процессами, в которых используются электродвигатели, применяется частотно-регулируемый привод (ЧРП), основным звеном которого, помимо двигателя, является преобразователь частоты (сокращенно называют – ПЧ, или просто «частотник»).


Преобразователи частоты

В связи с развитием микропроцессорной техники и электроники современные частотные преобразователи обладают следующими преимуществами:

  • обеспечение КПД установки до 99%;
  • наличие комплексного набора защит регулируемого электропривода;
  • возможность использования для множества технологических применений;
  • ограничение пусковых токов в пределах 1,2*Iн при запуске двигателя;
  • плавное регулирование скорости вращения двигателя в широком диапазоне частот;
  • возможность рекуперации энергии в питающую сеть для повышения энергоэффективности с помощью рекуператора;
  • наличие необходимых протоколов связи для обеспечения автоматизации и диспетчеризации в общей системе управления АСУ ТП.
Подбираем электропривод для крана: мостового и портального
Преобразователи частоты

Преобразователи частоты являются довольно универсальным приводным устройством, предусмотренным для работы в различных областях промышленности и производства. Но для каждого применения необходимо учитывать технологические особенности функционирования оборудования, которым будет управлять частотник, для оптимального использования имеющегося у преобразователя набора характеристик. Также это напрямую будет влиять на эффективность и бесперебойность работы самого частотника и электроприводного комплекса в целом.

Для понимания особенностей функционирования преобразователя частоты подробнее рассмотрим его устройство.


Устройство и принцип работы преобразователя частоты

Частотные преобразователи реализуют по схеме, состоящей из силовой и управляющей части. Силовая часть содержит в себе транзисторные, либо тиристорные элементы, работающие в качестве электронных ключей. Регулирование их работы производится при помощи цифровых микропроцессоров, которые помимо управления "ключевой" схемой еще выполняют функции защиты, диагностики и сопряжения с внешней системой управления преобразователем частоты.

В зависимости от принципа построения силовой части преобразователи можно разделить на 2 типа:

  • преобразователи частоты с промежуточным звеном постоянного тока;
  • без звена постоянного тока (ПЧ с непосредственной связью).

Одним из первых типов преобразователей частоты были именно «частотники» с непосредственной связью. Силовая часть данных устройств основывалась на тиристорных элементах и представляла собой управляемый выпрямитель.


При работе ПЧ группы тиристоров в определенной последовательности открывались, подавая напряжение на обмотки двигателя. Выходное напряжение таких преобразователей имело "пилообразную" форму, а его частота не могла превышать частоту питающей сети. Диапазон регулирования в преобразователях частоты без звена постоянного тока довольно мал – не более 1:10, что является недостаточным в современных реалиях управления технологическими объектами. Вследствие чего, в настоящий момент применение ПЧ подобного типа ограничено для большинства применений в связи с высокими требованиями, которые предъявляются к характеристикам входного напряжения и диапазону регулирования.


Вышеназванные недостатки ПЧ с непосредственной связью были решены в современных преобразователях частоты со звеном постоянного тока, силовая часть которых состоит из выпрямителя, фильтра и транзисторного инвертора.

Типовая схема и принципы работы ПЧ со звеном постоянного тока показаны на рисунке:
Частотный электропривод. Эффективность применения частотно-регулируемых приводов

В таких устройствах питающее напряжение преобразовывается дважды: входное напряжение выпрямляется в выпрямителе (1), сглаживается на фильтрующих элементах (2), и далее преобразуется в инверторе (3) в выходной сигнал с широтно-импульсной модуляцией (ШИМ). При необходимости на инверторном выходе до двигателя устанавливается моторный дроссель (4) для сглаживания токовых пульсаций.


На инверторе постоянное напряжение преобразуется в трехфазное переменное с изменяемой частотой и амплитудой. Микропроцессорное устройство в ПЧ подает сигналы управления на силовые транзисторы инвертора, формируя практически синусоидальный сигнал необходимой формы. Наибольшая ширина сигнальных импульсов – в середине полупериода, а в начале и ближе к окончанию полупериода она уменьшается, тем самым обеспечивая ШИМ-модуляцию напряжения, которое подается на обмотки двигателя.


Подобное построение силовой части ПЧ позволило преобразователям со звеном постоянного тока обеспечить:

  • широкий диапазон регулирования (до 1: 10 000);
  • быстродействие электроприводного комплекса в целом;
  • возможность регулирования частоты вращения на низких оборотах двигателя;
  • снижение уровня высших гармоник ПЧ и пульсации момента;
  • увеличение срока службы преобразователя частоты и управляемого им электродвигателя.


Относительно алгоритмов контроля и управления работой преобразователей частоты на практике подразделяются следующие методы управления:

  • скалярное управление;
  • векторное управление.

Скалярное (частотное) управление электродвигателем переменного тока используют там, где требуется поддерживать постоянным отношене напряжения к частоте.

Векторный принцип управления относительно скалярного – более производителен, имеет широкий диапазон и точность регулирования (в том числе на малых оборотах двигателя).

Метод управления выбирается в зависимости от требований, которые необходимы для выполнения технологического процесса.

Более подробно о различиях и особенностях применения скалярного и векторного метода регулирования можете прочесть в одной из наших предыдущих статей.


Частотный электропривод. Эффективность применения частотно-регулируемых приводов

Пример эффективного применения ЧРП

В качестве одного из объектов частотно-управляемого привода, где применение ПЧ качественно повышает эффективность всего технологического процесса, можно привести в пример подъемные механизмы, в частности – лифтовое оборудование. Учитывая тяжелые условия эксплуатации подобного оборудования, повторно-кратковременные режимы при частых включениях/отключениях, установка частотно-регулируемого привода является эффективной возможностью увеличения технологичности и оптимизации подъемных процессов, позволяя:

  • Существенно снизить энергопотребление привода (в среднем, частотный электропривод для управления лифтовым оборудованием экономит до 40% электроэнергии (по сравнению с применениями без ПЧ).
    Тем самым значительно уменьшаются затраты на энергоресурсы и есть возможность в минимальные сроки окупить средства, которые были вложены в модернизацию.

  • Осуществлять плавный запуск, разгон и остановку лифтовых механизмов, обеспечивая необходимое значение крутящего момента двигателя на небольшой частоте вращения и режим “противоотката” кабины лифта.
    Это позволит увеличить срок службы электродвигателей и механических частей механизма, уменьшить затраты на техническое обслуживание приводного комплекса, гарантировать оптимальный рабочий режим лифта.

  • Дополнить защитные функции системы.
    Данная опция позволит комплексно защитить привод по токовой перегрузке, перенапряжению, утечек, фазных обрывов и т.д.

  • Выполнить сброс излишней энергии при остановке приводного механизма.
    Это осуществляется при помощи подключаемых к частотнику тормозных резисторов, либо посредством рекуператоров энергии для максимально эффективного управления частотным приводом (в этом случае излишняя энергия будет возвращаться обратно в питающую сеть).

  • Модернизировать производственный цикл за счет широких возможностей управления работой привода и процессами торможения.
    Применение ПЧ обеспечивает точное регулирование скорости движения и положения кабины с помощью датчиков обратной связи (диапазон регулирования скорости 1:1000, точность поддержания скорости составляет 0,01%).


По статистике подобных применений, при внедрении преобразователей в лифтовых системах окупаемость частотного регулируемого привода не превышает 2 лет. При этом сокращаются затраты на обслуживание и ремонт лифтового электропривода.


Выводы

Применение преобразователей частоты при управлении электроприводами позволяет напрямую подстраивать регулируемые производственные характеристики (температуру, давление, скорость движения рабочих механизмов) под различные нужды с сохранением высокого КПД, обеспечивая при этом существенное снижение энергопотребления. Поэтому внедрение частотно-регулируемого привода позволяет решать задачи не только в области автоматизации процесса производства, но и в сфере энергосбережения.

Осуществляя на практике подбор частотного регулируемого привода, необходимо оценить требования, которые предъявляются к объекту управления – это диапазон и точность регулирования, необходимость удержания определенного момента на валу двигателя (в частности, при небольших частотах вращения) и требования к работе электропривода в аварийных ситуациях.


По вопросам подбора оборудования применительно к вашим техническим требованиям
и условиям применения обратитесь к специалистам компании ООО «»



Статья от РусАвтоматизации Хотите сохранить
эту статью? Скачайте
её в формате PDF
Статья от РусАвтоматизации Остались вопросы?
Обсудите эту статью
на нашей странице В Контакте
Статья от РусАвтоматизации Хочешь читать статьи
первым, подписывайся на
наш канал в Яндекс.Дзен

Рекомендуем прочитать также:

Статьи. Рекомендуем прочитать также

Подбираем электропривод для крана

Читать статью ...

Статьи. Рекомендуем прочитать также

Подбираем электропривод для КНС

Читать статью ...

Статьи. Рекомендуем прочитать также

Методы управления электроприводом

Читать статью ...



Водомер

WAM1

Новое
направление!

WAM2

Комплексные
поставки!

WAM3

Автоматизируйте
свое
производство!

WAM4

Внедряйте
новое
оборудование!

WAM5

Оснащайте
автоматизированные
системы!

Новости
21
09.20
Индикаторы потока. Часть 4. Контроль и учет
17
09.20
Индикаторы потока. Часть 3. Новые возможности
14
09.20
Индикаторы потока. Часть 2. Все гениальное - просто
10
09.20
Недорогая защита для ценного оборудования и систем
07
09.20
Контролируй уровень воды!